Fuzzy Logic IF-THEN Rules in Amzi! Prolog
(Singleton-Geometry and Centroid-Defuzzification Version)
Alberto Pacheco © 1997
/*
FUZZMACH.PRO:
Developed by Alberto Pacheco, 1996-1997
e-mail: apacheco@campus.chi.itesm.mx
This version supports:
- One-goal, one-sample-at-a-time
- Linear Fuzzy Membership Representations (upgradable)
- Zadeh Fuzzy Set Operators (upgradable)
- Centroid Defuzzification Method
- Singleton Geometry Output Space
To run, type:
?- main.
Test results:
> 0.153846 and 0.800000
> 0.153846 and 0.100000
> Centroid: carb = 1.000000 / 0.100000
> carb is ok
>
> 0.333333 and 0.055556
> 0.055556 and 0.000000e+000
> Centroid: carb = 1.000000 / 0.100000
> carb is rich
>
> 0.153846 and 0.800000
> 0.153846 and 0.857143
> Centroid: carb = 3.307693 / 0.253846
> carb is rich
>
> Output:
> carb = 13.030303
>
*/
% Operator Definitions
:- op(700, xfx, is).
:- op(720, xfy, and).
:- op(740, xfy, or).
:- op(760, xfx, then).
:- op(780, fx, if).
% Main Procedure:
% 1) Initialization;
% 2) Goal with Output Variable
main :-
init(carb),
one_goal(carb).
% Initialization: Clear global working memory
init(Var) :-
retractall(_),
assert(sum1(Var,0.0)),
assert(sum2(Var,0.0)),!.
% Probes all rules with conclusion 'Var'
one_goal(Var) :-
prove( Var is X ),
write(Var),write(' is '),write(X),nl,nl,
fail.
% Reports the composite solution
one_goal(Var) :-
write('Output: '),
output_value(Var,X),
nl, write(Var), write(' = '), write(X), nl.
%::: PRODUCTION RULES (FUZZY MODEL'S RULES) :::
% R-1
if co is low
and hc is low
and co2 is high
then carb is ok.
% R-2
if co is high
and hc is high
and co2 is medium
then carb is rich.
% R-3
if co is medium
and hc is low
and co2 is high
then carb is rich.
% R-4
if co is low
and hc is low
and co2 is medium
or co2 is low
then carb is poor.
%::: FUZZY SETS DEFINITIONS :::
fuzzy_set( co, low, dt, 0.0, 1.0, 0.0, 0.0 ).
fuzzy_set( co, medium, tp, 0.3, 1.0, 1.0, 1.7 ).
fuzzy_set( co, high, at, 1.0, 2.5, 0.0, 0.0 ).
fuzzy_set( co2, low, dt, 7.0, 8.5, 0.0, 0.0 ).
fuzzy_set( co2, medium, tp, 7.5, 8.5, 8.5, 10.0 ).
fuzzy_set( co2, high, at, 8.5, 15.0, 0.0, 0.0 ).
fuzzy_set( hc, low, dt, 150.0, 275.0, 0.0, 0.0 ).
fuzzy_set( hc, high, at, 150.0, 600.0, 0.0, 0.0 ).
%::: SINGLETON OUTPUTS :::
fuzzy_set( carb, poor, sg, 5.0, 0.0, 0.0, 0.0 ).
fuzzy_set( carb, ok, sg, 10.0, 0.0, 0.0, 0.0 ).
fuzzy_set( carb, rich, sg, 15.0, 0.0, 0.0, 0.0 ).
%::: INPUT VALUES :::
input_value( 1, co, 0.9 ).
input_value( 1, hc, 175.0 ).
input_value( 1, co2, 9.5 ).
/*
% ANOTHER SET OF INPUTS
input_value( 2, co, 0.33 ).
input_value( 2, hc, 235.00 ).
input_value( 2, co2, 13.80 ).
input_value( 3, co, 0.80 ).
input_value( 3, hc, 100.00 ).
input_value( 3, co2, 9.50 ).
input_value( 4, co, 3.90 ).
input_value( 4, hc, 600.00 ).
input_value( 4, co2, 9.90 ).
input_value( 5, co, 0.50 ).
input_value( 5, hc, 10.00 ).
input_value( 5, co2, 14.90 ).
*/
/***************************************************************
Prolog Interpreter in Prolog
Based on Dennis Merrit's Article
"Building Custom Rule Engines," PC AI, Mar/Apr 1996.
****************************************************************/
prove(ATTR is VALUE and REST) :- % AND
getav(ATTR, VALUE),
prove(REST),
apply_fuzzy_oper(and_z).
prove(ATTR is VALUE or REST) :- % OR
getav(ATTR, VALUE),
prove(REST),
apply_fuzzy_oper(or_z).
prove(ATTR is VALUE) :- % IS
getav(ATTR,VALUE).
getav(ATTR,VALUE) :- % IF/THEN (CONCLUSION)
if CONDITIONS then ATTR is VALUE,
prove(CONDITIONS),
retract(prem(Mx)),
centroid(ATTR,VALUE,Mx).
getav(ATTR,VALUE) :-
not(if _ then ATTR is _),
rule_translation(ATTR,VALUE).
%::: IS A BOOLEAN OR A FUZZY RULE? :::
% FUZZY RULE PROCESSING
rule_translation( T, Cj ) :-
clause( fuzzy_set(T,_,_,_,_,_,_), _ ), !,
input_value( _, T, X ), !,
fuzzification( T, Cj, X ).
% DISCRETE INFERENCE RULE PROCESSING
rule_translation( T, Cj ) :-
input_value( _, T, Cj ), !,
is_true.
rule_translation( T, Cj ) :-
is_false,
nl,write('Error in rule_translation(): Undefined set'),nl,write(T),nl,write(Cj).
%::: FUZZIFICACION :::
fuzzification( N, Cj, X ) :-
fuzzy_set( N, Cj, T, A, B, C, D ),
degree_of_membership( T, A, B, C, D, X, M ),
assert(prem(M)), !.
% LINEAR DECREASING FUZZY SET (dt)
degree_of_membership( dt, A, _, _, _, X, 1.0 ) :-
X =< A, !.
degree_of_membership( dt, _, B, _, _, X, 0.0 ) :-
X >= B, !.
degree_of_membership( dt, A, B, _, _, X, M ) :-
line_eq( dt, A, B, X, M ), !.
% LINEAR INCREASING FUZZY SET (at)
degree_of_membership( at, A, _, _, _, X, 0.0 ) :-
X =< A, !.
degree_of_membership( at, _, B, _, _, X, 1.0 ) :-
X >= B, !.
degree_of_membership( at, A, B, _, _, X, M ) :-
line_eq( at, A, B, X, M ), !.
% TRAPEZOIDAL OR TRIANGULAR FUZZY SET
degree_of_membership( tp, A, _, _, _, X, 0.0 ) :-
X =< A, !.
degree_of_membership( tp, A, B, _, _, X, M ) :-
X > A, X =< B,
line_eq( at, A, B, X, M ), !.
degree_of_membership( tp, _, B, C, _, X, 1.0 ) :-
X > B, X < C, !.
degree_of_membership( tp, _, _, C, D, X, M ) :-
X > C, X < D,
line_eq( dt, C, D, X, M ), !.
degree_of_membership( tp, _, _, _, _, _, 0.0 ). % X>D
%::: FUZZY OPERATORS :::
apply_fuzzy_oper( and_z ) :-
retract(prem(M1)),
write(M1),
retract(prem(M2)), !,
write(' and '), write(M2), nl,
min(M1,M2,M),
assert(prem(M)), !.
apply_fuzzy_oper( or_z ) :-
retract(prem(M1)),
write(M1),
retract(prem(M2)),!,
write(' or '), write(M2), nl,
max(M1,M2,M),
assert(prem(M)), !.
%::: CENTROID DEFUZZIFICATION METHOD :::
centroid(Var,Sg,Memb) :-
fuzzy_set(Var,Sg,sg,S,_,_,_),!,
P is (S*Memb),
retract(sum1(Var,Q)),
R is (P+Q),
assert(sum1(Var,R)),
retract(sum2(Var,N)),
M is (Memb+N),
assert(sum2(Var,M)),
write('Centroid: '),write(Var),write(' = '),write(R/M),nl,!.
%::: END OF DEFUZZIFICATION METHOD ::::
output_value(Var,X) :-
retract(sum1(Var,P)),
retract(sum2(Var,Q)),
P > 0.0,
Q > 0.0,!,
X is P/Q.
output_value(_,0.0) :- !.
%::: LINEAR INTERPOLATION :::
line_eq( dt, X1, X2, X, Y ) :-
Y is (X2 - X) / (X2 - X1).
line_eq( at, X1, X2, X, Y ) :-
Y is (X - X1) / (X2 - X1).
%::: BOOLEAN VALUES :::
is_true :- assert(prem(1.0)), !.
is_false :- assert(prem(0.0)), !.
%::: FUZZY FUNCTION PRIMITIVES :::
min( X, Y, X ) :- X < Y, !.
min( _, Y, Y ).
max( X, Y, X ) :- X > Y, !.
max( _, Y, Y ).