
���������	
��
	��
��
��������
�
��
����������������	��
���
�

���������	
��
�
���������
�����
���
���������	��

��������	�

JOSEPH KLEP
Institute for Curriculum Development
Boulevard 1945 3, 7511 CA Enschede

P.O. Box 2041, 7500 CA Enschede, The Netherlands
J.Klep@slo.nl

http://www.slo.nl/network/engels.html

���
��������
��
���������	
�
�������
�����
��
����
������

Petrushin and Sinitsa (1990) offer a short classification of learner mod-
els. They distinguish between fixing and simulating models. Both kinds of
models are based on a set of expert-rules. The learner model is a description
of students behaviour related to that set of expert-rules.

Arithmeticus does not contain expert-rules in the field of mathematics,
but meta-mathematical rules, telling which transitions are permitted in calula-
tions or in argumentations. Using those rules, Arithmeticus can construct
lines of arguments.

If a student has expressed his solution of a problem, Arithmeticus tries
to realise (for itself) this expressed solution by constructing a fitting line of
arguments (or algorithm). So, Arithmeticus offers a generic description of
mathematical knowledge based on meta-mathematical rules. The kernel of
Arithmeticus is not a psychological, but an epistemological, generic descrip-
tion of mathematics (arithmetics).

Around this kernel, we created a psychological shell by annotating so-
lutions of children. It works like this: In MathMirror (front end), a student
can express calculations by manipulating mathematical objects. Those ma-
nipulations (solutions) are recorded with time annotations. Comparing these
students’ expressions with solutions produced by Arithmeticus gives a lot

466 Klep

of information about the students work. So, it is possible to qualify solutions
in terms as effectiveness, speed, degree of automation, and used rote knowl-
edge. Those qualifications are based on learning history. For instance, new-
er solutions can repress older ones, and automatisms can improve or
deprove. Arithmeticus describes annotated and qualified students' solu-
tions. Solutions are added to the set of rules that Arithmeticus uses in pro-
ducing calculations or argumentations.

Arithmeticus can “learn” rules that are constructed by Arithmeticus and
recognised in students' work. This way, Arithmeticus is a generic represen-
tation of what a student might learn.

Arithmeticus is not a psychological model of how a student thinks. It
hasn’t that pretention. We think of Arithmeticus as a student's mathematical
mate, who tries to know what his friend is doing. Arithmeticus remembers
what the student-friend has done before and can understand the students
more and more. So, large pieces of argumentations can remain implicit after
some communication between a student and Arithmeticus. If the student-
friend falls back (regression) or produces something new, Arithmeticus can
mark it.

A student can fail in constructing or in expressing an algorithm or argu-
mentation. There are two levels of errors:

� Not acceptable transitions: logical or syntactical errors.
� Dirty argumentations: formally correct but inefficient or regressive argu-

mentations.

Logical and syntactical errors are detected immediately in the user inter-
face. Dirty argumentations are detected by Arithmeticus immediately after a
student has performed a given solution. Arithmeticus does not produce er-
rors like perturbation models. In fact, errors are not very important in Arith-
meticus because this system is interested in how a student can combine ac-
quired personal knowledge to create interesting solutions. Arithmeticus can
produce reactions such as, “Well, it is correct, but you can produce a short-
er solution.” Nevertheless, it is possible to add error generation to Arithmeti-
cus, too.

Arithmeticus is an epistemological, generative description of solutions
that a student is able to generate. A psychological shell qualifies students'
solutions in terms of knowledge and skills, which are stored in students’
learning history databases. Arithmeticus learns with a student, and can com-
municate with the student about qualities of students' solutions. In this con-
text, some epistemological aspects, ideas about learning mathematics, DPS-
based microworlds, and generic planning of exercises are discussed.

467Arithmeticus: A DPS-Based Model for Arithmetical Competence

��
	�����

Thinking is a chaotic process, but we can assess flows of thoughts by
expressing them in a language. Which expressions are acceptable and which
are not is culturally determined. So, concepts and lines of argument are not
necessarily successful representations of thinking. In language, philosophy
concepts and logic are products of the culture of a person, a group, or a so-
ciety. The scholastic way of defining concepts by describing essences is
only one of the possible ways of representing knowledge, maybe not very
interesting as far as learning is concerned.

In expert systems, models of cognition are often based on scholastic
knowledge representations. That might be useful in illustrating, explaining,
and criticising scientific results and methods. It might be less useful in pro-
voking creative thinking.

In this article, we concentrate on the question of how we can enrich cre-
ative thinking and how we can coach learning. A student in mathematics is
not someone who has to “behave like an expert mathematician,” but some-
one who is creative in thinking and sensible in communication between
mathematicians.

Instruction (in mathematics) should concentrate on the enrichment of
creative thoughts, facilitating expressions, and on reflection on communica-
tion (between mathematicians). Learning (mathematics) is not learning to be-
have like an expert (mathematician).

��� �
��!�����

From a (socio-) constructivist point of view (Varela, 1990), man is con-
structing knowledge by expressing thoughts with physical and linguistic
acts, and reflecting on the effects of those expressions in the physical and
social environment. Concepts are not defined by essences and attributes,
but concepts are clusters of experiences that people talk about in the same
kind of words. The relation “… is (an) …” (or nearly equivalent: “…is a sub-
set/element of …”) is fundamental in traditional logic.

A butterfly is symmetric.

A square is a quadrangle with sides of equal length and right angles.

Relations like “…is like…” are important in language philosophy or in
constructivist psychology.

468 Klep

A butterfly opens and closes itself like a book: both the wings of the
butterfly and the pages of the book fit precisely on each other.

Something is symmetrical if we can agree it is like a butterfly.

Something is a square if it is just like a piece of paper that can be fold
ed symmetrical in two ways.

Or something is a square if it is just like a flag that can be rotated in a
grid of flags.

The scholastic or Aristotelian way of modelling concepts in terms of es-
sences is a very important logical scientific method. But maybe it is not very
helpful when thinking about thought. In language philosophy it is not im-
portant to ask, “What is a book ?” but to ask, “In what circumstances do
people use the word ‘book?'” People do not use the word "book" because
all books have the same book-ness as common essence, but they use
“book” for things that are less or more alike in some conventional sense.

This seems a very loose way of defining concepts, but it seems to be
more like what really happens between people, and maybe more like what
happens in people's minds. Following the ideas of Varela, I prefer to say,
“We think by imagination.” Our thinking is a flow of imagination. Sometimes,
that flow is well known, based on experience, sometimes it is very chaotic
and directed by mutually competitive associations.

Realising or understanding what has been said or done is the other way
around to express thoughts. Realising is trying to have a fitting flow of
thoughts, and fitting means: “I could have expressed this flow of thoughts
in the same way as I have heard or seen now.”

469Arithmeticus: A DPS-Based Model for Arithmetical Competence

���"����#��$
���"��

In the ISMA project, we proposed to make a difference between think-
ing and reasoning. To think is a creative, very loose, and unstructured pro-
cess (Varela). To reason is expressing a flow of thoughts in lines of argu-
ments in a language. A mathematician tries to assess thoughts and intui-
tions (mathematical method) by expressing them in a formal language in
which the validity of lines of arguments is based on the conventions in
mathematical logic. That convention, itself, is a result of analysis of lines of
arguments that are widely accepted in a mathematical community.

Someone can learn mathematics in a community by trying to express
thoughts about numbers and structures, and by reflecting on the reactions
of others on those expressions. So, someone learns mathematics by practis-
ing this mathematical method.

%�&
��
�' Communication in a mathematical community: expressing and real-
ising are culturally bound.

�"#!(#!)
�!�
*����!#!)

Reasoning is a language-bound part of thinking. Before saying or doing
something, one can express thoughts in language and critique whether
those expressions will be successful or not. An expression is successful if
someone else can recognize the expression and agree with it. So, thinking is
not language bound, but it is a flow of imagination. A part of that thinking is
reasoning, and that is creating and criticising expressions. Reasoning is
method based, thinking is not.

In mathematics, methods are very rigorous. It is possible to construct
lines of arguments in a logical, correct way, and logically correct lines of ar-
guments have a very good chance of being accepted. Expressing flows of

Physical world including spoken and written language

Realising
meaning of
lines of
arguments
or actions

Expressing
flows of
thoughts

Person 1,
thinking by
imagination

Person 2,
thinking by
imagination

Person 2,
thinking by
imagination

470 Klep

thoughts implies reflection on the acceptability of formulated expressions,
that is, applying mathematical or other methods.

In mathematics communication, there are mainly two kinds of reactions
to an expression:

1. Formal reactions: I think your expression is (not) logically correct.
2. Semantic reactions: I can recognize what you expressed and I agree (not).

�+����	
���,���
���	��
-���.
���
���������	��
��	��/�����
-��/.'

Students who have to solve a mathematical or arithmetical problem have
to find an adequate orientation to their task. If a mathematical problem is
submitted to a student, pieces of his (mathematical) knowledge are associat-
ed with that problem. This associated knowledge is not a static, but a dy-
namic knowledge that changes with the state of the problem-solving pro-
cess. These pieces of actual knowledge are called a dynamic problem space
(DPS) (Newell & Simon, 1972).

In Klep (1992), mathematical microworlds (MMW) have been presented
as learning environments:

� They help children to actualise their DPS for the current problem state.
� Students can express their reasoning or calculations.
� MMWs offers feedback on the progression or regression of mathemati-

cal activity of the student.

A good MMW should reflect most relevant elements of the current DPS
of a child, corresponding to the current problem state in the MMW. A good
MMW should also support reflection of a student on solutions or actions.
MathMirror is such a MMW.

In order to present suitable information, suggestions, and tools in an
MMW, we need a Students Math Model (PMM), in which the mathematical
knowledge of a student can be represented and from which actual DPS’s can
be generated. Arithmeticus is such a PMM.

Given a problem P, the student has a DPS associated with P. If the stu-
dent has a poor DPS, the problem is not very meaningful. If the student has
a rich DPS, then the problem is more meaningful, and thestudent might have
a good chance to have a strategy to construct a solution for that problem.

471Arithmeticus: A DPS-Based Model for Arithmetical Competence

�0�����1
�0�����(������&�
���
�0����
�+�����'

Experts in any area are people with very rich DPSs that can be activated
when the expert is thinking about that area. An expert is well trained in using
conventional methods concerning that area.

In this epistemological view on experts, it is important to understand
that someone is free to use a method or not. Sometimes, a mathematician can
say, “Well, your proof is correct, but I feel your thesis is not good.” One of
the worst things a student in mathematics can do is try to find a solution by
applying lines of arguments that are known by heart.

In most expert systems, expert knowledge is modelled in facts and rules.
Those facts and rules are found by knowledge elicitation. But this kind of ex-
pert system represents only the lines of arguments and the methods used by
experts, that is, not the experts’ knowledge. In terms of Figure 1, expert sys-
tems represent objects, actions, and written and spoken language in a formal
(written) world and the (logical) relations between them. They do not repre-
sent the thinking process itself.

��������	�
2���
�
���������	�
��
*�������&

The difference between thinking and reasoning is made clear when a
child can say, “I think I can understand this, but I cannot explain it.” In
school, good performance (correct lines of arguments and computations) is
often identified with “someone is good in mathematics.” That is not neces-
sary true. A child might know one correct and well-trained type of solutions.
In that case, they have very poor DPSs in thinking. Maybe they are not very
creative in mathematics.

Bad performance is often identified with bad thinking. That seems to be
too fast. There is not much interest in the problems children can have ex-
pressing their mathematical imaginations.

Because thinking and performance are often identified, much instruction
is designated to tell children “how to solve” a problem or “how to think.”
That kind of instruction neglects the nature of thinking processes in a
child’s mind. So, there is a gap between thinking and performance.

Nevertheless, lines of arguments and calculations are the only things
that can be assessed because thinking is very hard to observe. But my as-
sumption is that most of the time, there are some successful thoughts be-
hind successful expressions. So, a good opportunity to enrich thinking is to
remind a child of earlier, successful thoughts and give suggestions that are
easily relatable to those earlier thoughts. In this epistemology, even the

472 Klep

most rigid instruction is a kind of enrichment of thinking (and DPS’s), based
on assessment of the mathematical performance of children.

�� ���#�!

Good education offers children a rich MMW that reflects, in some
sense, elements of their DPS of a problem. More exactly, a good MMW of-
fers expressions that can be realised, easily, by the student. So, education is
not offering “what a good expert would do.” That might be helpful for the
enrichment of a child’s DPS, but is rather indirect because offering expert be-
haviour is rather prescriptive and not an aid for creative thinking and formu-
lating thoughts.

��!3���� ��*
�#�$�) ��
#!
�"�
#���
�*�4���

In natural person-to-person communication, people give answers after
realising what the other person says (Figure 1). What could be the idea of
man-computer interaction? In the ISMA project, we have chosen an interac-
tion such as Figure 2. In this communication, Aritmeticus tries to interpret
students' (incomplete) expressions as a line of argument (a calculation).

%�&
��
5'
Man-computer communication in the ISMA project

In the man-computer interaction in the ISMA project, the computer is a
rather poor listener compared to a person. It only compares and assesses ac-
tual calculations and lines of argument of a child with “what a student is able
to do.” The front-end in which a child works in is called “MathMirror,” be-

MicroWorld including mathematical models and written formulae

Realising
meaning of
lines of
arguments
or actions

Expressing
flows of
thoughts

Pupil,
thinking by
imagination

of pupils'work
Interpretation

as a complete lines
of arguments

Arithmeticus
- Assesses lines

- Updates pupils
 of arguments

 performance base

Comments

473Arithmeticus: A DPS-Based Model for Arithmetical Competence

cause the program reflects a description of students’ reasoning performance,
the DPS of a child, and the quality of the solution compared to earlier work.
When starting with a new Student Arithmeticus, the knowledgebase is near-
ly empty; it only contains rules determining how to create algorithms, based
on a set of elementary rules and relations. Basic knowledge is addition and
subtraction with 0 and 1. How these programs work will be explained in next
paragraphs.

��
�����
������

Until now, the ISMA project did not concentrate on procedural errors.
In fact, only formal errors were reflected to make the child think about “a fail-
ing communication.” If an error occurs, the child had to make a desicion and
recreate the steps or solution.

Qualities of solutions are compared to the child’s learning history and
the solutions that should be calculated based on skill level. Correct solu-
tions, solutions without formal errors, are correct for Arithmeticus. Neverthe-
less, they can be ineffective, too long or complex. The system can give com-
ments such as, “I think you can find a shorter solution.”

����������

In the next paragraphs, MathMirror will be presented. This is followed
by a student’s solution in MathMirror that will be discussed, and then
Arithmeticus will be presented. In the last paragraph, implications of Arith-
meticus will be discussed. MathMirror1 is an experimental MMW in which
children can solve arithmetical problems.

MathMirror, in its experimental setting, offers a modest presentation.
MathMirror and Arithmeticus are test cases to recognize and test the episte-
mological and educational concepts of DPS and MMW as described previ-
ously. Early mathematics is a small but very rich area in which ideas can be
tested.

MathMirror is a front-end, and Arithmeticus is a student’s model for
learning early mathematics. They provide children a program for construct-
ing and training strategies for reducing addition, subtraction, multiplication
and division in early mathematics. (Age 7-12). Both in MathMirror and Arith-
meticus, fractions and real numbers are provided in the program's architec-
ture. (In an experimental setting they can be used already.) The concept of

474 Klep

Arithmeticus is very general: all formal knowledge and algorithms can be
handled in the same way.

%�&
��
6'
“Worksheet”

In Figure 3 a “worksheet” is shown in which the formula 85 + 38 is pre-
sented. The task is to reduce 85 + 38 to 123. If a student knows the answer,
123 can be written, and MathMirror will accept that. If a child does not know
the result by heart, these steps can be written:

If a student does not know what to do, the small icons in the menu can
be used. Marking the number 38 in 85 + 38 and clicking , give the result:

475Arithmeticus: A DPS-Based Model for Arithmetical Competence

That means: 38 = 30 + 8 or 38 is only “2 away from 40.” The student can
choose one of the two suggestions or quit. “ ” offers possible splits of 38
referring to “somewhat further than 30” or “somewhat before 40”. The sec-
ond suggestion only will be presented if the distance from 38 to 40 is well
known. In the same way, 85 can be split up into 80 + 5, 90 - 5, or 100 - 15.

Suppose the child chooses 100 - 15, then the task becomes:

The child might decide to reduce -15 + 38 first. Marking -15 + 38 and
clicking “ ” gives a commutation. (Marking 15 + 38 and clicking “ ” give
an error message: “You should mark the ‘-’ before 15, too.”) And maybe the
child reduces 38-15 to 23 by heart:

The last step, 100 + 23 = 123, is easy.
A quite different way of thinking about 85 + 38 is thinking in terms of

nice numbers. Marking 85 + 38 and clicking “ ” give a list of alternatives
related to what a child has proved to know to the system.

Some elements of the list are:

� 85 is near to 100, the difference is 15, so we need 38 - 15 = 23 more: 100 + 23.
� 85 is near to 90, the difference is 5, so we have: 90 + 33.
� 85 is near to 80, the difference 5 can be neglected for a moment: first 80 +

38, and then +5. In short: (80 + 38) + 5.

 Another related strategy is:
� 85 is near to 80, the difference 5 has to be added, well lets do it to 28, so

we have: 80 + 43.

“”

“”

476 Klep

A nice one is, I have got to add something to 85. Well, I first will add 35,
near to 38, but ending on a 5, so I have 120. And then: I know I need 3 more,
because 35 is 3 less then 38.

This kind of strategy is very refined and complicated. It is not the calcu-
lus that is complex. It is the massive need of knowledge and experience
needed for this kind of approximation. MathMirror only offers a suggestion
to a child if needed knowledge is available, indeed. In the first example, for
instance, the distance from 85 to 100 is needed, 38-15 is needed, and these
efforts are only useful if 100 + 23 is easy. So, MathMirror has to evaluate
whether these steps are available, before offering the suggestion 85 + 38 =
100 + 23.

Other tools in the upper toolbar will not be discussed here. These exam-
ples make it clear that the tools in the upper bar offer a part of the algebraic
DPS of 85+38.

The mathematical idea of substitution is supported by marking and re-
placing. For example, in case of:

3 + 5 + 7 + 5, where a student can mark 5 + 5 and replace it by 10.
Or in case of:
85 + 38 = 80 + 5 + 38, where a student marked 85 and replaced it by 80+5.
This mark-and-replace function is supported by a detailed error control

for grammar and logical mistakes.
At the lower bar on the right side we see other icons:

The two at the right side are not important now. They can be used to
exit the worksheet in some way. The left three offer the opportunity to take
85+38 or a marked sub-problem to another representation:

arrow-language

In this “arrow”-language 85 + 38 is understood as 85 + 10 = 95, 95 + 10
= 105 and so on. Adding tens and 5 and 3 is “stringing” steps until you are
far enough. In the “arrow language worksheet” and in the numberline work-
sheet the same tool-icons are available as in the “=”- worksheet.

numberline

477Arithmeticus: A DPS-Based Model for Arithmetical Competence

In the numberline worksheet, many techniques for drawing on the num-
berline are supported in order to express a strategy. For instance, someone
can decide to approximate 85 + 38 by 85 + 40:

In this numberline representation, the approximation is very easy to un-
derstand: 125 is a little bit too far. The difference is 40 - 38.

or to go to another “=”-worksheet.

478 Klep

This option is automatically used in case of a wrong replacement:
Suppose someone has split 85 + 38 into 100 - 15 + 38, commutes -15 +

38, marks 38 - 15, and replaces it by 33:

then MathMirror reacts with:

The mistake is implicitly marked, and the wrong reduction is offered in a
separate worksheet with all tools available.

MathMirror offers a counterpart of the student's DPS of 85 + 38 and its
sub-problems. Tools are sensible for the objects to which they are applied ,
and the tools of the MMW (worksheet) follow the child’s solution of the
problem and offer the child ideas that might belong to the child’s DPS.
“Might” means that the current student has the knowledge involved in the
strategy available.

�*#�"���#� ��
�
�� ��!��
����$

In this paragraph, how Arithmeticus produces solutions of exercises is
sketched. After that, how Arithmeticus “learns” arithmetic is presented. And
in the end, discussion includes how a zone of next development can be de-
fined using Arithmeticus and how Arithmeticus can “reflect” on quality of
solutions.

479Arithmeticus: A DPS-Based Model for Arithmetical Competence

���������	
��
��������&
��
����7�
���7�

In the description of MathMirror, 85 + 38 is used as an example. A stu-
dent can generate a solution in several ways:

� The reduction can be known by heart.
� An algorithm that is (rather) well known can be remembered.
� The expression can approximated.
� The expression can be split up or rounded up one or more numbers.
� Algebraic rules can be used, like commutation and substitution.

A DPS of 85 + 38 is a set of this kind of associations. Solving 85 + 38
can be understood as generating a chain of associations. Reminding the
DPS is changing with the state of the solution. A student’s reduction can be
modelled as a formal representation of that chain of associations: a sequence
of mathematical transformations. This is a DPS-based solution.

Sometimes it is rather difficult to understand the strategy that a child
has followed. What is -for example- the strategy behind: 45 + 19 = 60 + 4 =
64? Reasonable interpretations are:

��,��
�

Some Solutions for 45+19

1. A. B. C. D.
2. 45+19 45+19 45+19 45+19
3. 45+10+9 (45-1) + (19+1) 45+20-1 50+14
4. 45+10 44+20 45-1 60+4
5. 55 40+4+20 44 64
6. 55+9 40+20 44+20
7. 55+5+4 60 40+4+20
8. 55+5 60+4 40+20
9. 60 64 60
10. 60+4 60+4
11. 64 64

� Interpretation A is very common: 19 has been split up.
� Interpretation B is based on the rule: a + b = (a - c) + (b + c). That rule is

applied in order to change 19 into 20. That’s easier for addition.
� Interpretation C is based on the idea that 19 is just near to 20.
� Interpretation D is also based on the rule a + b = (a - c) + (b + c). First, 45

is rounded to 50, and 10 of 14 has been moved towards 50. Then 60 + 4 =
64 remains.

480 Klep

Suppose we know that this student knows reductions like 45 + 10=55
and 45 + 20 = 65. (These reductions are based on, for example, “counting for-
ward in steps of 10, from any number.”) Then, the interpretations B, C, and D
are not very likely:

� In interpretation B, steps 5 - 8 seem superfluous.
� In interpretation C, steps 7 - 10 seem redundant.
� In interpretation D, 50 + 14 seems to be known by heart (but for commu-

tation), so 60 + 4 seems to be superfluous.

Nobody gives a fully detailed reduction of an arithmetical expression;
only a few steps will be given which are necessary as an aid to memory.
Therefore, most solutions of arithmetical reduction tasks cannot be com-
pletely understood without any knowledge of what a student might know al-
ready. A good teacher who sees a student’s solution like 45 + 19 = 60 + 4 =
64, thinks, “What algorithms related to my instruction, give solution’s steps
that include 45 + 19 = 60 + 4 = 64?” A more refined question might be: “Given
the facts and algorithms a student knows, what algorithms using that knowl-
edge give solution steps, that include 45 + 19 = 60 + 4 = 64?”

For the interpretation of a student’s reductions, we need “the reduc-
tions a student is able to make.” We could collect reductions or reduction
strategies from schoolwork. The problem is there are thousands of possible
reductions. So, we have a representation problem and a collecting problem.
And if we have that collection of reductions, we still have the problem of
how to match those reductions with actual students' work. A problem be-
comes clear in solution A:

1. A. A’.
2. 45+19 45+19
3. 45+10+9 45+10+9
4. 45+10 45+10
5. 55 55
6. 55+9 55+9
7. 55+5+4
8. 55+5
9. 60

10. 60+4
11. 64 64

Steps 7-10 can be omitted, when a student can do 55 + 9 very fast and
by heart. So algorithm A’ is shorter than algorithm A. But it might be possi-
ble that a child writes:

481Arithmeticus: A DPS-Based Model for Arithmetical Competence

(i) 45 + 19 = 55 + 9 = 60 + 4 = 64.

in place of the shorter:

(ii) 45 + 19 = 55 + 9 = 64.
(ii) fits to algorithm A’, (i) is a regression in algorithm A’ or it is fitting to al-

gorithm A.
If a student uses often A’, I prefer to say (i) is a regression.

This example shows we need a dynamic set of students' facts and algo-
rithms changing with students' learning. In the next paragraph, a DPS-based
model of students' facts and algorithms is shown that permits complete inter-
pretation of students' solutions and can record progression and regression
in individual algorithms.

�*#�"���#� ��
)�!�*��#�!
�%
�$)�*#�"��
�
�� ��!�
#�
��$�
��

Arithmeticus produces reductions of any arithmetical expression by
combining transformations. Arithmeticus is simulating DPS-based solutions
by chaining elementary transformations (rules).

Arithmeticus is an inference engine with static and dynamic transforma-
tion rules. There are two kinds of static rules: algebraic rules and rules that
change representations. Dynamic rules are facts and algorithms that are
available for a current student.

A fact is a memorised relation like 3 + 4 = 7. An algorithm is a reduction
of an expression in a number of steps, as in Table 1. Algorithms are repre-
sented as a recursive, structured sequence of specified transformations. Al-
gorithms are not related to an exercise. Arithmeticus can test whether an al-
gorithm can be applied to an expression or not. In the students’ model, algo-
rithms can be qualified as strategy, routine, or automatism, depending on the
speed and correctness of student’s solutions.

In Arithmeticus concepts like “easy” and “is in the neighbourhood of”
have been defined. These concepts are used in strategies like: 6+7 is in the
neighbourhood of 6 + 6, or 63 - 48 is nearly 63 - 50.

Given an expression (as “85 + 38”), Arithmeticus can produce algo-
rithms that a current student is supposed to be able to produce. This way
Arithmeticus can produce hundreds of different algorithms to reduce “85 +
38.”

An algorithm is a sequence of static and dynamic transformations. Dy-
namic transformations are facts and algorithms that a current student learned
before. Each time Arithmeticus determines an algorithm that is new to the

482 Klep

current student, that new algorithm is added to the student’s knowledge
base. The same is done with facts. So, the set of dynamic rules is growing. In
other words, the DPS-model of a current student is growing.

Arithmeticus, with its dynamic and static rules, gives a generic model of
the algorithms that a student is able to do. New student’s reductions are in-
terpreted in that generic model.

Student’s reductions are interpreted in two or more steps:

1. Ask Arithmeticus which reductions of a formula are possible for the cur-
rent student.

2. Match the Arithmeticus solutions with the current student’s reductions.

Sometimes, there is ambiguity in the matching process. In that case, a
dialogue is started in which the current student can explain his algorithm in
more detail.

This matching covers the case of regression. If the matching process ex-
pects a solution by heart, but meets some steps belonging to what has to be
done by heart, a regression is established.

�*#�"���#� ��
� ���*�#!)
*�%$���#�!

A very interesting feature of Arithmeticus is the possibility to compare
algorithms. Length, complexity, numbers of integers, level of practice, and
other properties can be compared. On the basis of those properties, the qual-
ity of algorithms can be compared. Arithmeticus can see whether an algo-
rithm is used with less expressed steps or faster in time. Arithmeticus can
compare a current algorithm with other earlier-used students' algorithms for
the same type of reductions. And Arithmeticus can compare a solution with
the algorithms that a student is able to calculate. So, comments can be given
like:

“This is a nice new solution of yours.”
“Compliments, you proved you can do this algorithm by heart.”
“This is a good solution, but you know a faster one.”
“Please, do this reduction again and use the DPS-icons in MathMirror.”
So Arithmeticus can produce comments for a student in order to make

the studen reflect on the reduction.

483Arithmeticus: A DPS-Based Model for Arithmetical Competence

�*#�"���#� ��
)�!�*#�
�$�!!#!)
�%
�8�*�#���

One of the most exciting aspects of Arithmeticus is the possibility of
planning exercises by calculating a zone of next development. Given a set of
goal exercise types and a current state of Arithmeticus, it is possible to cal-
culate which type of exercises can be done on what kind of level by the cur-
rent student. A planning algorithm chooses, from this zone of next develop-
ment, sets of exercises and individual exercises to be used whether a student
has requested knowledge available or not.

This way of planning is very different from the usual curriculum defini-
tion. There is no sequence of exercises that defines the curriculum. There is
only a set of goal exercise types. By implication, the learning path of individ-
ual students can differ. The learning paths are not redefined but are generi-
cally defined by the set of goal-exercises, the current state of Arithmeticus
for the current student, and the planning algorithm that tells which exercises
from the zone of next development will be chosen first.

Up to now, there are two goal exercise types: formula types and algo-
rithm types. Formula types are, for example, addition exercises with operands
from a certain domain. Algorithm types are sets of formulae that have to be
solved by the same algorithm.

#��$#���#�!�
�%
�*#�"���#� ��
)�!�*#�
�� ��!��
 9�*� �

�8��*������$$#!)

Arithmeticus and MathMirror offer a learning environment in which a
child can develop personal strategies. There are no predefined expert solu-
tions. A solution can be good or nicely related to a child’s learning history.
The more strategies or facts a child learns, the smarter Arithmeticus will be
and the more smart solutions Arithmeticus will expect of a student. In some
sense Arithmeticus learns the arithmetic of a child and reflects all previous
work in the MMW MathMirror in order to have a child recognize the DPS of
a current problem. What is smart for Arithmeticus is smart for the student,
and the other way round. What Arithmeticus can do is combine all a child
knows and elementary mathematical transformations so it can create “what a
student is supposed to be able to do.” Arithmeticus and MathMirror can
feed a student’s creative thinking by offering a student a meaningful but for-
mal based dialogue in which a child can enrich personal thinking.

484 Klep

*������	��

Klep, J. (1992). Learning elementary mathematics: A discussion of Micro-
Worlds. In P. Kommers et al.: Cognitive tools for Learning, NATO ASI
Series, Vol. F81, Berlin Heidelberg: Springer-Verlag.

Newell, A., & Simon H. (1972). Human problem solving. Englewood Cliffs,
N.J.: Prentice Hall.

Petrushin, V.A., & Sinitsa K.M. (1990) Learner’s knowledge adaptive testing
based on the Bayesian approach to decision making (in Russian). Comput-
erized technologies in education (pp. 71-76). Kiev: Glushkov Inst. for Cy-
bernetics.

Varela, F.J. (1990). Kognitionswissenschaft-Kognitionstechnik: Eine skizze ak-
tueller Perspektiven. Suhrkamp, Frankfurt am Main.

!���

1. A school and a home version of MathMirror (“Plato and his MathMir-
ror”) was edited by Zwijsen, Tilburg, Netherlands in September/Decem-
ber, 1997.

